Energy management in
Wireless Sensor Networks:
Applications, issues and opportunities

Kameshwar Poolla
University of California, Berkeley
July 08, 2010
Symposium on Industrial Embedded Systems
Trento
This Talk

I. When will we *really* see WSN industrial applications?
 [Provocative opinions]

II. Our Embedded Systems Applications
 - Devices for Assisted Living
 - Precision Agriculture
 - Bacteria as Embedded Systems

II. System level Energy management in WSN
Industrial Applications of WSN

• Hasn’t really happened yet
• Many companies – Dust Networks, CrossBow, ArchRock, Ember, Moteiv, MeshNetics, Invensys, ...
• Many deployments
 perimeter security
 building monitoring
 networked control
But No Home Run !!

- US $ 5.3 Billion market by 2010 predicted
- < $50 Million realized in 2009
- **Why no home run?**
 - Cost will be addressed when consumer market materializes
 - Standards being addressed now
 - Ownership this limits the market in many applications
The Driving Application for WSN?

- Home appliances for demand response
 - Refrigerators, air-conditioners, lighting
 - Turning on/off appliances using price signals
 - Smart charging of PHEVs
 - Smart Grid comes home!!

- It is a consumer market
- Very innovative selling strategies
- Aggregator subsidies
The DALi Project

- [Consumer] Devices for Assisted Living
 [Work in progress]
- Luigi Palopoli + Roberto Passerone
- Inspiration:

 Enormously successful, sophisticated embedded systems
 Integrated sensing, haptic interfaces, etc
Objectives

- New generation of consumer [< 1000 Euro] devices
- Assist elderly, deaf, impaired
- For decision making in uncertain human environments
- Smart Walkers, Headphones, Navigators
Problems

- Understanding user needs
- Sensing the environment inexpensively
- Representing the environment to the user
 acoustic, haptic, visual
 what are language constructs
- Kinematic Modeling of the environment [obstacles, pedestrians]
- Universal design abstractions
Precision Agriculture

- Lew Feldman + Andy Packard

- Greenhouses
 - Inexpensive
 - Large scale
 - Fully Instrumented
 - Distributed actuation

- China has 5 million acres!
Problems

• Need to sense plant stress state
• Idea: use a guinea-pig plant as a sensor
genetically modified *Arabidopsis*
green-fluorescent-protein constructs
leaves fluoresce with different signatures
can detect salinity, thermal, water stress

• Possible good WSN application!
• But not a home run!
Bacteria as Embedded Systems

- Adam Arkin + Mike Morimoto
- *Bacillus subtilis* is a widely studied bacterium
- States
 - V: vegetatively growing
 - D: deciding to sporulate or divide
 - C: committed to sporulation
 - S: mature spore
Fundamental Questions

• How do bacteria encode conditional logic?
 If [enough food & temp is good]
 Then [grow and divide]
 Else [sporulate]
 End

• We believe it is a Phospor-relay mechanism ...

• Are bacteria optimists or pessimists?
 from evolutionary objectives, we believe they are pessimists ...
Energy Aware Sensor Scheduling in Wireless Sensor Networks

Eilyan Bitar, Enrique Baeyens, Kameshwar Poolla

University of California, Berkeley

July 7, 2010
Outline

Introduction and Problem Motivation

Results I

Results II

Conclusions

Future Work
What is the job of a sensor network?
To gather a *sufficient* amount of information about the immediate environment to enable execution of tasks or decisions at base-station.
Sufficient amount of information: measurements from certain *subsets* of sensors
A sufficient amount of information is commonly comprised of measurements belonging to a subset of the sensors in the networks.
A sufficient amount of information is commonly comprised of measurements belonging to a subset of the sensors in the networks.
A sufficient amount of information is commonly comprised of measurements belonging to a subset of the sensors in the networks.
A sufficient amount of information is commonly comprised of measurements belonging to a subset of the sensors in the networks.
Redundancy built into the network implies these *sufficient* sensor sets are not unique. So base-station has a *choice* of interrogating suitable sensor sets in order to accomplish its task.
If the base-station must conduct its task repeatedly at times t_1, t_2, t_3, \ldots, \[\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5, \ldots\]
If the base-station must conduct its task repeatedly at times t_1, t_2, t_3, \ldots,

Eilyan Bitar, Enrique Baeyens, Kameshwar Poolla
Definitions: Network Composition

Definition

Task: job that must be conducted repeatedly at the base-station. Requires data from a pod at each time \(t \).
Definitions: Network Composition

Definition

Task: job that must be conducted repeatedly at the base-station. Requires data from a pod at each time t.

Definition

Pod: is a set σ of sensors whose measurements at time t are sufficient for the base-station to accomplish its task at time t.

1, 2, 3, σ_1, bs
Definitions: Network Composition

Definition

Task: job that must be conducted repeatedly at the base-station. Requires data from a pod at each time t.

Definition

Pod: is a set σ of sensors whose measurements at time t are sufficient for the base-station to accomplish its task at time t.
Definitions: Network Composition

Definition

Task: job that must be conducted repeatedly at the base-station. Requires data from a pod at each time t.

Definition

Pod: is a set σ of sensors whose measurements at time t are sufficient for the base-station to accomplish its task at time t.
Definitions: Network Composition

Definition

Task: job that must be conducted repeatedly at the base-station. Requires data from a pod at each time t.

Definition

Pod: is a set σ of sensors whose measurements at time t are sufficient for the base-station to accomplish its task at time t.
Definitions: Network Composition

Definition

Task: job that must be conducted repeatedly at the base-station. Requires data from a pod at each time t.

Definition

Pod: is a set σ of sensors whose measurements at time t are sufficient for the base-station to accomplish its task at time t.

Definitions:

- **Task:** job that must be conducted repeatedly at the base-station. Requires data from a pod at each time t.
- **Pod:** is a set σ of sensors whose measurements at time t are sufficient for the base-station to accomplish its task at time t.

Eilyan Bitar, Enrique Baeyens, Kameshwar Poolla

Energy Aware Sensor Scheduling in Wireless Sensor Networks
Definitions: Network Composition

Definition

Task: job that must be conducted repeatedly at the base-station. Requires data from a pod at each time t.

Definition

Pod: is a set σ of sensors whose measurements at time t are sufficient for the base-station to accomplish its task at time t.

Definition

$n_S \triangleq$ number of sensors.
$n_P(t) \triangleq$ number of pods at time t.
Definitions: Battery Model

- \(e_i(t) \) denotes the **energy state** of sensor \(i \) at time \(t \).
- If sensor \(i \) is interrogated by the base station in \([t, t + \tau]\), its energy decrements by \(\beta_i = 1 \) after interrogation.
- Model ignores energy loss due to **parasitic discharge**, **sensing**, **receiving**.
- Transmission is dominant energy depletion mode in many applications.
Definitions: Network Lifetime

Definition

Network *lifetime* L is the number of times the base-station can successfully accomplish its task.

L depends on policy and is a function of the energy states of the sensors.
Definitions: Network Composition

\[S(t) = \{ \sigma_1, \cdots, \sigma_{n_P(t)} \} \]
are the acceptable pods at time \(t \).

Note that

- The composition of \(S(t) \) is application dependent.
- \(S(t) \) may be time varying.
• **Application specific tasks** conducted at the base-station are abstracted as **pods** [sufficient sensor sets].

• Our scheduling policies will depend solely on $S(t)$ and the sensor energy state (e_1, \cdots, e_{n_S}).

• \Rightarrow Isolation of application specific performance objective from the network performance objective.
Some Applications

Some possible applications that fit naturally in our framework are *State estimation, Target tracking, Event detection*

Dynamical System:

\[
\begin{align*}
x(t + 1) &= Ax(t) + Gw(t) \\
y_i(t) &= C_i x(t) + v_i(t) \quad i = 1, \cdots, n_S
\end{align*}
\]

Computation of Pods \(S(t) \):

\[
S(t) = \{ \sigma \subseteq \{1, \cdots, n_S\} : \|P_\sigma(t)\| \leq \gamma \}
\]

where \(P_\sigma(t) := \) estimation error covariance at time \(t \)

\(\gamma := \) upper bound on norm of \(P_\sigma(t) \)
Target Tracking Example
Target Tracking Example
Target Tracking Example
Example 1: \(\text{policy} = \{ \sigma_3, \sigma_3, \sigma_2 \} \)

time: \(t = 0 \)

lifetime: \(L = 0 \)

policy: Use pod -

\(e_1(0) = 2 \ \bigcirc \bigcirc \)
\(e_2(0) = 4 \ \bigcirc \bigcirc \bigcirc \bigcirc \)
\(e_3(0) = 3 \ \bigcirc \bigcirc \bigcirc \)

\(\sigma_1 = \{ 1, 2 \} \)
\(\sigma_2 = \{ 2, 3 \} \)
\(\sigma_3 = \{ 3, 1 \} \)
Example 1: policy = \{\sigma_3, \sigma_3, \sigma_2\}

time: \ t = 1

lifetime: \ L = 1

policy: Use pod 3

e_1(1) = 1

\sigma_1 = \{1, 2\}

\sigma_2 = \{2, 3\}

\sigma_3 = \{3, 1\}
Example 1: policy = $\{\sigma_3, \sigma_3, \sigma_2\}$

\[
time: \quad t = 2 \\
lifetime: \quad L = 2 \\
policy: \quad \text{Use pod 3}
\]

\begin{align*}
e_1(2) &= 0 \\
e_2(2) &= 4 \quad \circ \circ \circ \circ \\
e_3(2) &= 1 \quad \circ \\
\sigma_1 &= \{1, 2\} \\
\sigma_2 &= \{2, 3\} \\
\sigma_3 &= \{3, 1\}
\end{align*}
Example 1: policy = \{\sigma_3, \sigma_3, \sigma_2\}

time: \quad t = 3

lifetime: \quad L = 3

policy: \quad Use pod 2

\begin{align*}
 e_1(3) &= 0 \\
 e_2(3) &= 3 \quad \circ \circ \circ \circ \\
 e_3(3) &= 0
\end{align*}

\begin{align*}
 \sigma_1 &= \{1, 2\} \\
 \sigma_2 &= \{2, 3\} \\
 \sigma_3 &= \{3, 1\}
\end{align*}
Example 2: \(\text{policy} = \{\sigma_2, \sigma_2, \sigma_2 \sigma_1\} \)

- **time:** \(t = 0 \)
- **lifetime:** \(L = 0 \)
- **policy:** Use pod -

 - \(e_1(0) = 2 \)
 - \(e_2(0) = 4 \)
 - \(e_3(0) = 3 \)

\(\sigma_1 = \{1, 2\} \)
\(\sigma_2 = \{2, 3\} \)
\(\sigma_3 = \{3, 1\} \)
Example 2: policy = \{\sigma_2, \sigma_2, \sigma_2 \sigma_1\}

time: \quad t = 1

lifetime: \quad L = 1

policy: \quad \text{Use pod } 2

\sigma_1 = \{1, 2\}
\sigma_2 = \{2, 3\}
\sigma_3 = \{3, 1\}

E_1(1) = 2 \quad \circ \circ
E_2(1) = 3 \quad \circ \circ \circ \circ
E_3(1) = 2 \quad \circ \circ
Example 2: policy = \{\sigma_2, \sigma_2, \sigma_2 \sigma_1\}

\begin{align*}
time: & \quad t = 2 \\
\text{lifetime:} & \quad L = 2 \\
\text{policy:} & \quad \text{Use pod 2}
\end{align*}

\begin{align*}
e_1(2) &= 2 \\
e_2(2) &= 2 \\
e_3(2) &= 1
\end{align*}

\begin{align*}
\sigma_1 &= \{1, 2\} \\
\sigma_2 &= \{2, 3\} \\
\sigma_3 &= \{3, 1\}
\end{align*}
Example 2: policy = $\{\sigma_2, \sigma_2, \sigma_2 \sigma_1\}$

- $t = 3$
- $L = 3$
- **Policy:** Use pod 2

$e_1(3) = 2$
$e_2(3) = 1$
$e_3(3) = 0$

$\sigma_1 = \{1, 2\}$
$\sigma_2 = \{2, 3\}$
$\sigma_3 = \{3, 1\}$
Example 2: policy = \{\sigma_2, \sigma_2, \sigma_2 \sigma_1\}

time: \ t = 4

lifetime: \ L = 4

policy: Use pod 1

e_1(4) = 1

\bigcirc

e_2(4) = 0

e_3(4) = 0

\sigma_1 = \{1, 2\}

\sigma_2 = \{2, 3\}

\sigma_3 = \{3, 1\}
The simple preceding examples demonstrate the importance of sensor scheduling in network lifetime maximization.
Informal Problem Statement

These simple examples show importance of sensor scheduling in network lifetime maximization
The optimal system lifetime L and corresponding policy x are determined by solving the following integer linear program (ILP):

$$\max_{x \in \mathbb{N}^{n_P}} L : Ax \leq E, \quad L = \sum_{j=1}^{n_P} x_j$$

- $A_{ij} = 1 \iff$ sensor $i \in$ pod σ_j.
- e_i denote the initial available energy in sensor i.
- x_j denote the number of times pod $\sigma_j \in \mathcal{S}$ is used.
- $E = [e_1 \cdots e_{n_S}]^*$ and $x = [x_1 \cdots x_{n_P}]^*$
Sensor Scheduling: Time Invariant Pods

Proof idea:

- $A_{ij} = 1 \iff \text{sensor } i \in \text{pod } \sigma_j$.
- e_i denotes the initial available energy in sensor i.
- x_j denotes the number of times pod σ_j is used.
- $E := [e_1 \cdots e_n]^{\ast}$ and $x := [x_1 \cdots x_n]^{\ast}$.

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$x^{\ast} = \arg\max_{x \in \mathbb{N}^3} x_1 + x_2 + x_3 \quad \text{s.t.} \quad Ax \leq E$$

$$= \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$$
Remark: Optimal schedules are non-unique.
Sensor Scheduling: Time Invariant Pods

Remark: Optimal schedules are non-unique.

Problem Relaxation:

- ILPs are NP-hard.
Remark: Optimal schedules are non-unique.

Problem Relaxation:

- ILPs are NP-hard.
- Standard relaxation: let x live in \mathbb{R}^{nP}.
Remark: Optimal schedules are non-unique.

Problem Relaxation:

- ILPs are NP-hard.
- Standard relaxation: let x live in \mathbb{R}^{nP}.
- Let \overline{x} denote the solution of this LP.
Remark: Optimal schedules are non-unique.

Problem Relaxation:

- ILPs are NP-hard.
- Standard relaxation: let x live in \mathbb{R}^{nP}.
- Let x denote the solution of this LP.
- $\lfloor x \rfloor$ is a feasible point for the ILP, where the floor is taken component-wise.

Theorem: This relaxation will offer suboptimal policy that is with a constant of nP of the optimal lifetime.
Remark: Optimal schedules are non-unique.

Problem Relaxation:

- ILPs are NP-hard.
- Standard relaxation: let x live in \mathbb{R}^{nP}.
- Let \bar{x} denote the solution of this LP.
- $\lfloor \bar{x} \rfloor$ is a feasible point for the ILP, where the floor is taken component-wise.
- $L = \text{lifetime corresponding to feasible point } \lfloor \bar{x} \rfloor$.
Remark: Optimal schedules are non-unique.

Problem Relaxation:

- ILPs are NP-hard.
- Standard relaxation: let x live in \mathbb{R}^{nP}.
- Let \bar{x} denote the solution of this LP.
- $\lfloor \bar{x} \rfloor$ is a feasible point for the ILP, where the floor is taken component-wise.
- $L = \text{lifetime corresponding to feasible point} \lfloor \bar{x} \rfloor$.
- Then, it is easy to show that $L^\circ - L \leq nP$.

Sensor Scheduling: Time Invariant Pods

Remark: Optimal schedules are non-unique.

Problem Relaxation:

- ILPs are NP-hard.
- Standard relaxation: let x live in \mathbb{R}^{nP}.
- Let \underline{x} denote the solution of this LP.
- $\lfloor \underline{x} \rfloor$ is a feasible point for the ILP, where the floor is taken component-wise.
- $L = \text{lifetime corresponding to feasible point } \lfloor \underline{x} \rfloor$.
- Then, it is easy to show that $L^\circ - L \leq n_P$.

Theorem

This relaxation will offer suboptimal policy that is with a constant of n_P of the optimal lifetime.
Sensor Scheduling: Time-varying Pods

Theorem

The lifetime L is achievable on the horizon N if and only if the following ILP over the decision variables $x(t)$ and N is feasible:

$$Ax \leq E, \quad L = \sum_{t=1}^{N} \sum_{j=1}^{n_P(t)} x_j(t), \quad \sum_{j=1}^{n_P(t)} x_j(t) \leq 1 \quad \forall \ t$$

(2)
Sensor Random Failure Model

- We allow for sensors to abruptly fail random times.
- The binary valued stochastic process $\{\theta_i(t)\}_t$ models the occurrence of an irreparable malfunction at sensor i.

\[P_i = 1 - p_i \]

- Sensor i will cease functioning if the θ_i transitions to the absorbing state $\theta_i = 0$.
- $\theta_i(t) \perp \theta_j(s) \forall i \neq j, s, t$
Example of Scheduling under Random Failure

time: t

Base-station communicates with a pod from the family

$S(t) = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5\}$.

- **time:** t
- **Base-station communicates with a pod from the family**
- $S(t) = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5\}$.

Diagram of sensor pods and base-station.
Example of Scheduling under Random Failure

time: \(t \)

Chosen pod \(\sigma_1 \) then transmits to base-station, depleting the energy of its sensors.
Example of Scheduling under Random Failure

time: t

Network returns to wait mode.
Example of Scheduling under Random Failure

Base-station communicates with a pod from the family $S(t) = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5\}$. Chosen pod σ_1 then transmits to base-station, depleting the energy of its sensors.

Network returns to wait mode.

Sensors may randomly fail.

\[\text{time: } t \]

Process repeats with remaining viable pods, $S(t) = \{\sigma_1, \sigma_3, \sigma_4\}$.

Eilyan Bitar, Enrique Baeyens, Kameshwar Poolla

Energy Aware Sensor Scheduling in Wireless Sensor Networks
Example of Scheduling under Random Failure

time: $t + 1$

Process repeats with remaining viable pods, $S(t) = \{\sigma_1, \sigma_3, \sigma_4\}$.
With random sensor failures, we shall be concerned with the expected lifetime $\mathcal{L} = \mathbb{E}[L]$

- Clearly L depends on scheduling policy which is a function of the energy states of the sensors.
- Requires that we have access to the true sensor energy states $\{e_i(t)\}$ for all t.

Definition
Certainty Equivalence Assumption

- Our scheduling policies require that the base-station can detect sensor failures instantaneously.
- In practice, however, we would at best receive **noisy measurements** of $e_i(t)$ at times t when sensor i is interrogated.
Certainty Equivalence Assumption

- Given a measurement of $e_i(t)$ at time of the most recent sensor interrogation and using a simple battery model, we can compute an optimal estimate $\hat{e}_i(t + m)$ of the energy state:

$$\hat{e}_i(t + m) = \begin{cases} e_i(t) \cdot \mathcal{P}_{m} & \text{if } \mathcal{P}_{m} \geq 1/2 \\ e_i(t) \cdot \mathcal{I} \{ \mathcal{P}_{m} \geq 1/2 \} & \text{ML estimate} \end{cases}$$
Certainty Equivalence Assumption

- Given a measurement of $e_i(t)$ at time of the most recent sensor interrogation and using a simple battery model, we can compute an optimal estimate $\hat{e}_i(t + m)$ of the energy state:

$$\hat{e}_i(t + m) = \begin{cases} e_i(t) \cdot P_i^m & \text{MV estimate} \\ e_i(t) \cdot \mathbb{I}\{P_i^m \geq 1/2\} & \text{ML estimate} \end{cases}$$
Certainty Equivalence Assumption

- Given a measurement of $e_i(t)$ at time of the most recent sensor interrogation and using a simple battery model, we can compute an optimal estimate $\hat{e}_i(t + m)$ of the energy state:

$$\hat{e}_i(t + m) = \begin{cases} e_i(t) \cdot P^m_i & \text{MV estimate} \\ e_i(t) \cdot \mathbb{I}\{P^m_i \geq 1/2\} & \text{ML estimate} \end{cases}$$

- Inspired by certainty-equivalence ideas, we can use the estimates $\hat{e}_i(t)$ as surrogates for the true energy state $e_i(t)$ in our scheduling policies at time t.
Dynamic Programming: Recursive Definition of Optimal Expected Lifetime

Definition

\[\mathcal{L}_i(e_1, \cdots, e_{n_S}), \text{ expected lifetime resulting from an initial use of pod } i \text{ and optimal pod usage thereafter.} \]
Dynamic Programming: Recursive Definition of Optimal Expected Lifetime

Definition

\[L_i(e_1, \cdots, e_{n_S}) \], expected lifetime resulting from an **initial use of pod i** and **optimal pod usage thereafter**.

Using this we can write a recurrence formula for optimal lifetime:

\[L^\circ(e_1, \cdots, e_{n_S}) = \max_{i \in S} L_i(e_1, \cdots, e_{n_S}) \]
Dynamic Programming: Recursive Definition of Optimal Expected Lifetime

Definition

\[\mathcal{L}_i(e_1, \cdots, e_{n_S}), \text{ expected lifetime resulting from an initial use of pod } i \text{ and optimal pod usage thereafter.} \]

Using this we can write a recurrence formula for optimal lifetime:

\[\mathcal{L}^o(e_1, \cdots, e_{n_S}) = \max_{i \in S} \mathcal{L}_i(e_1, \cdots, e_{n_S}) \]

This approach has a *time complexity* of \(O(c^{n_S}) \) where \(c = \max_i e_i \).
Properties of Optimal Expected Lifetime Under Random Failure

For the case of a network consisting of two singleton pods (i.e. one sensor in each pod), we have

\[\sigma_1, \sigma_2 \]

where, for \(i = 1, 2 \),

\[e_i : \text{energy of sensor } i \]
\[p_i : \text{failure probability of sensor } i \]
\[P_i := 1 - p_i \]
Properties of Optimal Expected Lifetime Under Random Failure

For the case of a network consisting of two singleton pods (i.e. one sensor in each pod), we have

\[\sigma_1 \quad \text{bs} \quad \sigma_2 \]

where, for \(i = 1, 2 \),

\[e_i := \text{energy of sensor } i \]
Properties of Optimal Expected Lifetime Under Random Failure

For the case of a network consisting of two singleton pods (i.e. one sensor in each pod), we have

\[\sigma_1 \quad \text{bs} \quad \sigma_2 \]

where, for \(i = 1, 2 \),

\[e_i := \text{energy of sensor } i \]
\[p_i := \text{failure probability of sensor } i \]
Properties of Optimal Expected Lifetime Under Random Failure

For the case of a network consisting of two singleton pods (i.e. one sensor in each pod), we have

\[\sigma_1 \quad \text{bs} \quad \sigma_2 \]

where, for \(i = 1, 2 \),

\[
\begin{align*}
e_i &:= \text{energy of sensor } i \\
p_i &:= \text{failure probability of sensor } i \\
P_i &:= 1 - p_i
\end{align*}
\]
Properties of Optimal Expected Lifetime Under Random Failure

For the case of two singleton pods (i.e. one sensor in each pod), we have
Properties of Optimal Expected Lifetime Under Random Failure

For the case of two singleton pods (i.e. one sensor in each pod), we have

\[\mathcal{L}_1(e_1, e_2) = 1 \]
Properties of Optimal Expected Lifetime Under Random Failure

For the case of two singleton pods (i.e. one sensor in each pod), we have

\[\mathcal{L}_1(e_1, e_2) = 1 + P \{\text{sensors 1 and 2 live}\} \mathcal{L}^\circ(e_1 - 1, e_2) \]
Properties of Optimal Expected Lifetime Under Random Failure

For the case of two singleton pods (i.e. one sensor in each pod), we have

\[L_1(e_1, e_2) = 1 + P \{\text{sensors 1 and 2 live}\} L^\circ(e_1 - 1, e_2) \]
\[+ P \{\text{sensor 1 lives and sensor 2 dies}\} L^\circ(e_1 - 1, 0) \]
Properties of Optimal Expected Lifetime Under Random Failure

For the case of two singleton pods (i.e. one sensor in each pod), we have

\[L_1(e_1, e_2) = 1 + P \{ \text{sensors 1 and 2 live} \} L^\circ (e_1 - 1, e_2) \]
\[+ P \{ \text{sensor 1 lives and sensor 2 dies} \} L^\circ (e_1 - 1, 0) \]
\[+ P \{ \text{sensor 1 dies and sensor 2 lives} \} L^\circ (0, e_2) \]
Properties of Optimal Expected Lifetime Under Random Failure

For the case of two singleton pods (i.e. one sensor in each pod), we have

\[\mathcal{L}_1(e_1, e_2) = 1 + P \{ \text{sensors 1 and 2 live} \} \mathcal{L}^\circ(e_1 - 1, e_2) \]
\[+ P \{ \text{sensor 1 lives and sensor 2 dies} \} \mathcal{L}^\circ(e_1 - 1, 0) \]
\[+ P \{ \text{sensor 1 dies and sensor 2 lives} \} \mathcal{L}^\circ(0, e_2) \]
\[+ P \{ \text{sensor 1 dies and sensor 2 dies} \} \mathcal{L}^\circ(0, 0) \]
Properties of Optimal Expected Lifetime Under Random Failure

For the case of two singleton pods (i.e. one sensor in each pod), we have

\[\mathcal{L}_1(e_1, e_2) = 1 + P \{\text{sensors 1 and 2 live}\} \mathcal{L}^\circ(e_1 - 1, e_2) + P \{\text{sensor 1 lives and sensor 2 dies}\} \mathcal{L}^\circ(e_1 - 1, 0) + P \{\text{sensor 1 dies and sensor 2 lives}\} \mathcal{L}^\circ(0, e_2) + P \{\text{sensor 1 dies and sensor 2 dies}\} \mathcal{L}^\circ(0, 0) \]

which reduces to

\[\mathcal{L}_1(e_1, e_2) = 1 + P_1 P_2 \mathcal{L}^\circ(e_1 - 1, e_2) + P_1 p_2 \mathcal{L}^\circ(e_1 - 1, 0) + p_1 P_2 \mathcal{L}^\circ(0, e_2) \]
Properties of Optimal Expected Lifetime Under Random Failure

Properties of optimal lifetime $\mathcal{L}^*(e_1, e_2)$ for two singleton pods.
Properties of optimal lifetime $\mathcal{L}^\circ(e_1, e_2)$ for two singleton pods.

1. $\mathcal{L}_1(e_1, e_2) = 1 + P_1 P_2 \mathcal{L}^\circ(e_1 - 1, e_2) + P_1 p_2 \mathcal{L}^\circ(e_1 - 1, 0) + p_1 P_2 \mathcal{L}^\circ(0, e_2)$
Properties of Optimal Expected Lifetime Under Random Failure

Properties of optimal lifetime $\mathcal{L}^o(e_1, e_2)$ for two singleton pods.

1. \[\mathcal{L}_1(e_1, e_2) = 1 + P_1 P_2 \mathcal{L}^o(e_1 - 1, e_2) + P_1 p_2 \mathcal{L}^o(e_1 - 1, 0) + p_1 P_2 \mathcal{L}^o(0, e_2) \]

2. \[\mathcal{L}^o(e_1, e_2) = \max_{i=1,2} \mathcal{L}_i(e_1, e_2) \]
Properties of Optimal Expected Lifetime Under Random Failure

Properties of optimal lifetime $\mathcal{L}^\circ(e_1, e_2)$ for two singleton pods.

1. $\mathcal{L}_1(e_1, e_2) = 1 + P_1 P_2 \mathcal{L}^\circ(e_1 - 1, e_2) + P_1 p_2 \mathcal{L}^\circ(e_1 - 1, 0) + p_1 P_2 \mathcal{L}^\circ(0, e_2)$

2. $\mathcal{L}^\circ(e_1, e_2) = \max_{i=1,2} \mathcal{L}_i(e_1, e_2)$

3. $\mathcal{L}^\circ(e_1, 0) = 1 + P_1 + \cdots + P_1^{e_1-1} = (1 - P_1^{e_1})/p_1$
Properties of Optimal Expected Lifetime Under Random Failure

Properties of optimal lifetime $\mathcal{L}^\circ(e_1, e_2)$ for two singleton pods.

1. $\mathcal{L}_1(e_1, e_2) = 1 + P_1 P_2 \mathcal{L}^\circ(e_1 - 1, e_2) + P_1 p_2 \mathcal{L}^\circ(e_1 - 1, 0) + p_1 P_2 \mathcal{L}^\circ(0, e_2)$
2. $\mathcal{L}^\circ(e_1, e_2) = \max_{i=1,2} \mathcal{L}_i(e_1, e_2)$
3. $\mathcal{L}^\circ(e_1, 0) = 1 + P_1 + \cdots + P_1^{e_1-1} = (1 - P_1^{e_1})/p_1$
4. $\mathcal{L}_1(e_1, e_2 - 1) = \mathcal{L}_2(e_1 - 1, e_2)$
The optimal scheduling policy for maximizing the expected lifetime L is given by

$$i^\circ(t) = \arg \min_{i \in \{1, 2\}} \epsilon_i(t) \log(1 - \pi_i) - \log(\pi_i)$$ \hspace{1cm} (3)$$

where

$$\epsilon_i(t) := \min_{j \in \sigma_i} e_j(t) \quad \text{and} \quad \pi_i := 1 - \prod_{j \in \sigma_i} P_j$$

$\sigma_1 \cap \sigma_2 = \emptyset$
Sensor Scheduling: Two Non-intersecting Pods $(\sigma_1 \cap \sigma_2 = \emptyset)$ with Different Failure Probabilities
Sensor Scheduling: Two Non-intersecting Pods with Different Failure Probabilities (Proof)

- WLOG, we will represent each pod as a single sensor (a pod fails \iff at least one of its member sensors fails).
Sensor Scheduling: Two Non-intersecting Pods with Different Failure Probabilities (Proof)

- WLOG, we will represent each pod as a single sensor (a pod fails \iff at least one of its member sensors fails).
- For clarity, let $e(t) = (m, n)$ and $(p_1, p_2) = (p, q)$ and the theorem can be restated as
Sensor Scheduling: Two Non-intersecting Pods with Different Failure Probabilities (Proof)

- WLOG, we will represent each pod as a single sensor (a pod fails ⇔ at least one of its member sensors fails).
- For clarity, let $e(t) = (m, n)$ and $(p_1, p_2) = (p, q)$ and the theorem can be restated as

$$
\begin{align*}
\text{use sensor 1 if} & \quad pQ^n > qP^m \\
\text{use sensor 2 if} & \quad pQ^n < qP^m \\
\text{use either sensor if} & \quad pQ^n = qP^m
\end{align*}
$$
Sensor Scheduling: Two Non-intersecting Pods with Different Failure Probabilities (Proof)

- WLOG, we will represent each pod as a single sensor (a pod fails \(\iff\) at least one of its member sensors fails).
- For clarity, let \(e(t) = (m, n)\) and \((p_1, p_2) = (p, q)\) and the theorem can be restated as:

\[
\begin{align*}
& \text{use sensor 1 if } pQ^n > qP^m \\
& \text{use sensor 2 if } pQ^n < qP^m \\
& \text{use either sensor if } pQ^n = qP^m
\end{align*}
\]

- We first show by induction on the total energy \(E = m + n\) that:

\[
pQ^n \geq qP^m \implies \mathcal{L}_1(m, n) \geq \mathcal{L}_2(m, n)
\]
Sensor Scheduling: Two Non-intersecting Pods with Different Failure Probabilities (Proof)

- The assertion is easily verified for the base step $E = 1$.
The assertion is easily verified for the base step $E = 1$.

Fix (m, n) and suppose $m + n = E^*$.
Sensor Scheduling: Two Non-intersecting Pods with Different Failure Probabilities (Proof)

- The assertion is easily verified for the base step $E = 1$.
- Fix (m, n) and suppose $m + n = E^*$.
- Assume that the result holds for all energy states with total energy $E < E^*$.
Sensor Scheduling: Two Non-intersecting Pods with Different Failure Probabilities (Proof)

- The assertion is easily verified for the base step $E = 1$.
- Fix (m, n) and suppose $m + n = E^*$.
- Assume that the result holds for all energy states with total energy $E < E^*$.
- Define $\Delta = L_1(m, n) - L_2(m, n)$.
Sensor Scheduling: Two Non-intersecting Pods with Different Failure Probabilities (Proof)

We have

$$\Delta = PQ(\mathcal{L}^\circ (m - 1, n) - \mathcal{L}^\circ (m, n - 1)) + pQ^n - qP^m$$
Sensor Scheduling: Two Non-intersecting Pods with Different Failure Probabilities \textbf{(Proof)}

We have

\[
\Delta = PQ(L^\circ(m-1,n) - L^\circ(m,n-1)) + pq^n - qP^m \\
\geq PQ(L_2(m-1,n) - L^\circ(m,n-1)) + pq^n - qP^m
\]
Sensor Scheduling: Two Non-intersecting Pods with Different Failure Probabilities (Proof)

We have

\[\Delta = PQ(L^\circ(m - 1, n) - L^\circ(m, n - 1)) + pQ^n - qP^m \]

\[\geq PQ(L_2(m - 1, n) - L^\circ(m, n - 1)) + pQ^n - qP^m \]

since \(L^\circ(m, n) \geq L_i(m, n) \quad \forall i \)
Sensor Scheduling: Two Non-intersecting Pods with Different Failure Probabilities (Proof)

We have

\[\Delta = PQ \left(\mathcal{L}^\circ (m - 1, n) - \mathcal{L}^\circ (m, n - 1) \right) + pQ^n - qP^m \]
\[\geq PQ \left(\mathcal{L}_2 (m - 1, n) - \mathcal{L}^\circ (m, n - 1) \right) + pQ^n - qP^m \]

since \(\mathcal{L}^\circ (m, n) \geq \mathcal{L}_i (m, n) \quad \forall i \)

\[= PQ \left(\mathcal{L}_2 (m - 1, n) - \mathcal{L}_1 (m, n - 1) \right) + pQ^n - qP^m \]
Sensor Scheduling: Two Non-intersecting Pods with Different Failure Probabilities \textbf{(Proof)}

We have

\[
\begin{align*}
\Delta &= PQ(L^\circ(m-1,n) - L^\circ(m,n-1)) + pQ^n - qP^m \\
&\geq PQ(L_2(m-1,n) - L^\circ(m,n-1)) + pQ^n - qP^m \\
&\text{since } L^\circ(m,n) \geq L_i(m,n) \quad \forall i \\
&= PQ(L_2(m-1,n) - L_1(m,n-1)) + pQ^n - qP^m \\
&\text{by the induction hypothesis, } m + n - 1 < E
\end{align*}
\]
Sensor Scheduling: Two Non-intersecting Pods with Different Failure Probabilities (Proof)

We have

$$
\Delta = PQ(L^\circ (m - 1, n) - L^\circ (m, n - 1)) + pQ^n - qP^m
\geq PQ(L_2(m - 1, n) - L^\circ (m, n - 1)) + pQ^n - qP^m
$$

since $L^\circ (m, n) \geq L_i(m, n) \quad \forall i$

$$
= PQ(L_2(m - 1, n) - L_1(m, n - 1)) + pQ^n - qP^m
\geq 0 + pQ^n - qP^m
$$

giving us the desired result.
A symmetric argument shows that using sensor 2 at energy state (m, n) is optimal if $pQ^n \leq qP^m$, completing the proof. □
Sensor Scheduling: Many Non-intersecting Pods

\((\sigma_i \bigcap \sigma_j = \emptyset \quad \forall \ i \neq j)\) with Identical Failure Probabilities

Theorem

The optimal scheduling policy for maximizing the expected lifetime \(L\) is to use the most energetic sensor first, i.e.

\[
i^*(t) = \arg \max_{i \in S} \epsilon_i(t)
\]

where

\[
\epsilon_i(t) := \min_{j \in \sigma_i} e_j(t)
\]
Sensor Scheduling: Two Non-intersecting Pods
\((\sigma_1 \cap \sigma_2 = \emptyset)\) with Different Failure Probabilities
Sensor Scheduling: Many Non-intersecting Pods with Identical Failure Probabilities (Proof)

- For transparency, we prove the theorem for the *three* sensor case.
- Let p be the failure rate for any sensor and let the energy state be $e(t) = (m, n, k)$.
- We prove by induction on the total energy $E = m + n + k$ that

 \[
 \begin{align*}
 m \geq n & \implies \mathcal{L}_1(m, n, k) \geq \mathcal{L}_2(m, n, k) \\
 m \geq k & \implies \mathcal{L}_1(m, n, k) \geq \mathcal{L}_3(m, n, k)
 \end{align*}
 \]
The assertion is easily verified for the base step $E = 1$.

Fix (m, n, k) and suppose $m + n + k = E^*$. Assume that the result holds for all energy states with total energy $E < E^*$.

Define $\Delta^{12} = \mathcal{L}_1(m, n, k) - \mathcal{L}_2(m, n, k)$.

Sensor Scheduling: Many Non-intersecting Pods with Identical Failure Probabilities (Proof)
Sensor Scheduling: Many Non-intersecting Pods with Identical Failure Probabilities (Proof)

We now have

\[
\Delta^{12} = P^3 \left(\mathcal{L}^\circ (m - 1, n, k) - \mathcal{L}^\circ (m, n - 1, k) \right) + P^2 p \left(\mathcal{L}^\circ (m - 1, n, 0) - \mathcal{L}^\circ (m, n - 1, 0) \right) + P^2 p \left(\mathcal{L}^\circ (m - 1, 0, k) - \mathcal{L}^\circ (m, 0, k) + \mathcal{L}^\circ (0, n, k) - \mathcal{L}^\circ (0, n - 1, k) \right) + P p^2 \left(\mathcal{L}^\circ (m - 1, 0, 0) - \mathcal{L}^\circ (m, 0, 0) + \mathcal{L}^\circ (0, n, 0) - \mathcal{L}^\circ (0, n - 1, 0) \right)
\]
Sensor Scheduling: Many Non-intersecting Pods with Identical Failure Probabilities (Proof)

- The terms T^a and T^b are ≥ 0 by the induction hypothesis as the total energy is $m - 1 + n + k < E^*$.
- The term T^d simplifies to $T^d = P^{n-1} - P^{m-1} > 0$ as $m > n$.
- The difficult term is T^c.
Sensor Scheduling: Many Non-intersecting Pods with Identical Failure Probabilities (Proof)

- Using previously defined identities, we can write a difference equation for $\psi(m, k) = L(m, 0, k) - L(m - 1, 0, k)$ and obtain the closed form expression:

$$\psi(m, k) = \begin{cases}
P^{m-1} - P^{2m-k-1} + P^{2m-2k}X(k) & m \geq k \\
\frac{pP^m(1 - P^{2k-2m})}{1 - P^2} + P^{2k-2m}X(m) & m \leq k
\end{cases}$$

where

$$X(k) = \left(P^{4k-1} \left(\frac{p}{1 - P^3} \right) + P^k \left(\frac{1 - P^2}{1 - P^3} \right) \right)$$
Sensor Scheduling: Many Non-intersecting Pods with Identical Failure Probabilities (Proof)

- We can now write \(T^c = -\psi(m, k) + \psi(n, k) \).
- After much algebra, it can be verified that \(m \geq n \implies T^c \geq 0 \).
- As a consequence we have \(\Delta^{12} \geq 0 \).
- A similar argument shows that \(m \geq k \implies \Delta^{13} \geq 0 \).
- As a result using sensor 1 is optimal at energy state \((m, n, k)\) if \(m > n \) and \(m \geq k \). \(\square \)
Some general principles emerge from our results.

- All sensors equally energetic \Rightarrow use the least reliable sensor first.
- All sensors equally reliable \Rightarrow use the most energetic sensor first.
- i.e. use the sensor with the greatest expected energy loss.
- Equitable risk distribution across sensors.
Many challenging problems remain open:
Many challenging problems remain open:

- How to compute $S(t)$ in different application domains?
Many challenging problems remain open:

• How to compute $S(t)$ in different application domains?

• Connections with model predictive control when we have a dynamic model of $S(t)$.
Future Work

Many challenging problems remain open:

• How to compute $S(t)$ in different application domains?
• Connections with model predictive control when we have a dynamic model of $S(t)$.
• Link failure.
Future Work

Many challenging problems remain open:

- How to compute $S(t)$ in different application domains?
- Connections with model predictive control when we have a dynamic model of $S(t)$.
- Link failure.
- How does packet loss and latency affect system lifetime?
Many challenging problems remain open:

- How to compute $S(t)$ in different application domains?
- Connections with model predictive control when we have a dynamic model of $S(t)$.
- Link failure.
- How does packet loss and latency affect system lifetime?
- For multiple base stations competing to use the same sensor resources, we naturally obtain multi-objective problems in sensor selection and scheduling. What is a good metric of lifetime in this case? How do we optimize lifetime in case limited inter-base-station communication?